KAJIMA CORPORATION

ENVIRONMENTAL DATA

2023

Environmental Policy

Kajima, as the company "Building for the Next 100 Years," pursues a unique long-term environmental vision, doing its part in the broader social efforts to preserve the environment and ensure economic sustainability.

1

We work to reduce the environmental impact of our business and take into consideration the entire lifecycle of the structures we construct. We thereby seek to help build societies which use materials responsibly, have a low carbon footprint, and harmonize with nature.

2

As a standard for achieving these goals, Kajima:

- Creates innovative technologies that help safeguard the environment and use resources sustainably;
 - Engages in construction management processes to prevent environmental damage caused by hazardous materials used in construction projects; and
 - Cooperates with the public, including by proactively disclosing information.

Kajima Environmental Vision

Background of Kajima Environmental Vision

Kajima assess environmental risks and opportunities in the construction business as follows.

To achieve the 2050 carbon neutrality goal, both adopting renewable energy and making society more energy efficient are urgent tasks. Carbon High expectation is observed to construction industry like initiatives to zero energy building (ZEB) since it is a high-priority measures from the standpoint that energy efficiency of **Neutral** buildings is in particular cost and reduction effectiveness together with adaptable easily. **Society** Resource usage has been largely utilized as well as CO₂ emissions related to the production, processing and transportation of materials. Recycling There is a room for more efficient resource utilization since construction industry has a large amount of resource and waste consumption. Resources Potential to take advantage of recycled materials (including derived from other industries), therefore, an important role in resource recycling. By leveraging the long-life of the building, the large role in the creation of stock society. **Society** In the construction business, a role in modifying the direct natural environment through construction projects which has been involved in the local eco-system, as well as the Natural potential of biodiversity restoration in the urban redevelopment. Since the urban concentration of the population progresses, the growing importance of biodiversity restoration in the city. Society Through wood procurement and resource procurement, biodiversity can be addressed in logged spots.

The Kajima Environmental Vision: Triple Zero 2050

The Kajima Environmental Vision: Triple Zero 2050 recognizes carbon neutrality, resource recycling and harmoniously co-existing with nature as the key aspects of a sustainable society, and sets Zero Carbon, Zero Waste, and Zero Impact to be the future goals for Kajima to achieve by 2050.

Each of the three Zero goals has been set from two perspectives: risks (reducing the environmental impact of business activities will achieve the Zero goals) and opportunities (the Zero goals will be achieved through business/product proposals made to society and our customers).

Triple Zero 2050 was formulated in May 2013, but to match it to the state of society, it was reviewed once in May 2018, May 2021, September 2022, and again in June 2023, each time resulting in the revision of the carbon neutrality goal.

Target 2030

Target 2030 identifies the core activities for achieving Triple Zero 2050 and sets the 2030 target for the design and construction phases as quantitatively as possible.

Triple Zero 2050 (Formulated in 2013; revised in June 2023)

	Social Goals	Triple Zero 2050	Target 2030		
Achieving a More Sustainable World	Carbon Neutrality A society that balances greenhouse gas emissions from human activities with the Earth's capacity for CO ₂ absorption	Zero Carbon Aiming to achieve carbon neutrality for the Kajima Group's greenhouse gas emissions (Scope 1,2,3 emissions)	[Group-wide] Reduce Group-wide greenhouse gas emissions (Scope 1 and 2 emissions) per unit of sales by 42% or more compared to fiscal 2021 (equivalent to a 42% reduction of total emissions with fixed construction amount). Reduce Scope 3 emissions (classed as Category 1 during construction material production and Category 11 during building operation) by 25% on more. [Architectural Design] Implement ZEB/ZEH levels for all building construction projects starting in or after fiscal 2030. Note: The target for contract awards for construction projects starting in or after fiscal 2025 is for at least 50% to meet ZEB/ZEH levels.		
	Recycle Resources A society that pursues zero emissions by employing state-of- the-art infrastructure maintained and operated using sustainable resources	Zero Waste Aiming to eliminate waste from construction operations by ensuring zero final waste disposal during construction, utilizing sustainable materials, and making buildings last longer	Completely eliminate final waste disposal from construction operations Achieve a usage rate of recycled materials of at least 60% for principal construction materials* Principal construction materials (steel, cement, ready-mixed concrete, crushed stone and asphalt)		
	Harmoniously Co-Existing with Nature A society that values the continuous benefits of ecosystem services by minimizing the	Zero Impact Aiming to minimize the overall environmental impact of construction operations by limiting their effect on nature and living creatures while promoting the restoration of biodiversity and new ways to make use of its benefits	Promote biodiversity restoration projects Build a portfolio of effective projects and make them hubs for biodiversity-related networking Promote biodiversity restoration projects Build a portfolio of effective projects		
	impact of human activities on the environment and living creatures	Management of hazardous substances: Thoroughly implement preventative measures (especially for soil contamination and asbestos)			
	Common Foundation Initiative Areas	Conduct technology development Actively distribute information in and outside the Company			

Environmental Targets (FY2021-2023) and FY2022 Actual Figures

		Three-Year (FY2021–2023)Targets	FY2022Targets	FY2022 Results
	Construction	 Reduce CO₂ emissions per unit of sales by 26% compared to FY2013 →7% compared to FY2021 	Reduce by 3.5% compared to FY2021	 Increased by 14.9% compared to FY2021
		Deepen ZEB technologies that contribute to the decarbonization of customer companies. Strengthen	Strengthen promotion of ZEB, BELS, and other labeling systems (with a particular focus on ZEB Ready and ZEB Oriented)	Pushed the use of the labeling systems in 45 projects and acquired the ZEB/ ZEH certification for five projects
Carbon Neutrality		promotion of the use of labeling systems such as ZEB and Building-Housing Energy-efficiency Labeling System (BELS) Deepen energy management	 Achieve internal energy conservation standards (20% reduction) and promote internal targets (30% reduction in office buildings, 25% reduction in commercial buildings) 	 Office buildings: achieved a 44% reduction as a weighted average for all projects while the internal energy conservation standard was 20% and the internal target was 30%
Carbon	Design	technologies	Promote ZEB through technical proposals for energy management, use of IoT and other digital technologies, and work style proposals	Commercial buildings: achieved an 18% reduction as a weighted average for all projects while the internal energy conservation standard was 20% and the internal target was 25%
				Two projects were selected for the ZEB/ZEH feasibility demonstration program by the Ministry of Land, Infrastructure, Transport, and Tourism (Shin-Fukuoka Building and Osaka Juso East Area Development Plan)
ces	Construction	Less than 3% final waste disposal including sludge	 Less than 3% final waste disposal including sludge 	 2.7% final waste disposal including sludge
Recycle Resources	Design	Implement green procurement	 Propose more than four items for green procurement, indicate them on working drawings and verify whether or not the proposed items were ultimately adopted 	Implement green procurement: Average of 5.4items proposed
sly Co- n Nature	Construction	 Reduce the impact of construction on the natural environment (particularly through management of hazardous materials and polluted water) 	Reduce the impact of construction on the natural environment (particularly through management of hazardous materials and polluted water)	Environmental problems that would affect the natural environment: 0
Harmoniously Co- Existing with Nature	Design	 Implement outstanding biodiversity projects 	Implement more than six outstanding biodiversity projects per year	Selected 7 outstanding biodiversity projects (building construction: 5, Civil Engineering; 1, frontier: 1)
	Kajima	With the goal of contributing to fulfilment of Triple Zero 2050, tighten cooperation	Target for research and development to help with the environment	Result for research and development to help with the environment
Areas	Technical Research Institute	of all departments and move forward with research and development that will contribute to the environment	Themes: at least 15 Patents: at least 10 Academic papers: at least 30	Themes: 16 (Climate strategy: 4; resource recycling: 2; harmoniously co-existing with nature: 4; and living environment: 6) Patents: 12 Academic papers: 54
ıtive /	and customer requirements Promote the prevention of er	·	Identify customers' EHS statuses and check and support their plans to achieve Triple Zero	Checked their Triple Zero efforts and gave them appropriate guidance
Common Foundation Initiative Areas		Promote the prevention of environmental accidents involving various chemical substances	 Assess customers' risks, pay close attention to their handling of chemical substances, and implement strict environmental risk management 	Checked their handling of chemical substances and gave them appropriate guidance Participated in all required projects
Foundat			Promote activities to win contract awards through the utilization of wastewater treatment technologies	
l nom		Promote environmental management in concert with Group companies	Expand projects with core environmental technologies and services	Worked on many renewable energy projects
Com	Environmental Engineering Division	Make technical innovations and create projects based on Triple Zero 2050	 Strengthen efforts in four priority fields Initiatives for next-generation technologies/projects 	Continued working on environmental infrastructure projects (waste disposal sites and water and sewage facilities) (two orders received for water and sewage facility construction projects) Lauren of the Haldwide Children
				 Launch of the Hokkaido Shikaoi Hydrogen Supply Project

Material Flow

Construction Sites

INPUT						
Energy						
Electricity	8,666×104kW 🗸					
Green electricity	104 ×10 ⁴ kW					
Diesel oil	68,286 kℓ ✓					
GTL	499 kl					
B100	9 kl					
B5	97 kl					
Kerosene	566kℓ ✓					
Gasoline	586kℓ ✓					
Heavy oil	1,622kℓ ✓					
• Water						
Tap Water	123×10 ⁴ m³ 🗸					
Construction materials	1,335 ×10 ⁴ t					

OUTP	UT
UUIP	וע
● CO₂ emissions	22.6 ×10 ⁴ t
Wastewater	92.4 ×10 ⁴ m³
Construction surplus soil	127.6 _{×10⁴m³}
 Hazardous materials collected 	
Materials containing asbestos	5,627t 🗸
CFCs and halon	3.2 t ✓
Fluorescent tubes	49.1 t 🗸
Construction waste	188.2 ×10⁴t ✓
• Final disposal volume	5.1 ×10⁴t ✓

Changes in CO ₂ emissions attributable to construction						
Total emissions	22.6 ×10 ⁴ t-CO ₂	~				
Basic unit	16.0 t-CO ₂ /10 ² million	~				
Reduction rate	+14.9%	~				
* Denominator of the basic unit is sales of construction work						

(/100 million) (not disclosed)

Office

INPUT						
Energy						
Electricity	2,741 ×104kWh					
Green electricity	786 ×10 ⁴ kW					
Diesel oil	6 kl 🗸					
Kerosene	20 kl 🗸					
Heavy oil	24 kl 🗸					
Gas	15.0×10 ⁴ m ³					
Heating, Steam, Cooling	13,153 GJ					
Water						
Tap Water	17.0 _{×10⁴m³}					

OUTP	PUT
CO ₂ emissions	0.8 ×10⁴t ✓
Wastewater	17.0 ×10⁴m³ ✓
Volume of waste	1,651 t 🗸

Volume of construction waste and final disposal volume							
Volume	188.2 ×10 ⁴ t	~					
Volume (excluding sludge)	120.8 ×10 ⁴ t	✓					
Final disposal volume	5.1 ×10 ⁴ t	~					
Final disposal volume (excluding sludge)	4.3 ×10 ⁴ t	~					
Final disposal rate	2.7%	✓					
Final disposal rate(excluding sludge)	3.6%	~					

Kajima Group CO2 Emissions

	Scope1	Scope2	Scope3
Kajima (non-consolidated)	18.9 ×10 ⁴ t-CO ₂	4.6 ×10 ⁴ t-CO ₂	23.4 ×10 ⁴ t-C0 ₂
Domestic Group companies	8.9 ×10 ⁴ t-CO ₂	2.4 ×10 ⁴ t-CO ₂	11.3 ×10 ⁴ t-CO ₂
Overseas Group companies	6.5 ×10 ⁴ t-CO ₂	6.9 ×10⁴t-CO ₂	13.3 ×10 ⁴ t-CO ₂
Consolidated Kajima Group	34.2 ×10 ⁴ t-CO ₂	13.8×10 ⁴ t-CO ₂	48.1 ×10 ⁴ t-CO ₂

The Kajima Group's CO₂ emissions are subject to error due to rounding of individual data and total.

■Scope: Kajima Corporation only

- •Construction sites: all domestic and overseas sites (excluding domestic affiliate companies and overseas
- •Offices: offices of Kajima corporation and overseas offices (excluding domestic affiliate companies and overseas subsidiaries)

■Regarding third party verification

• Environmental performance data for FY2022, including greenhouse gas emissions (Scope 1, 2, 3), energy use, tap water use, hazardous materials, and waste emissions were verified by Japan Quality Assurance Organization (JQA). Items indicated with were verified by the third party. (Verification document attached to the end page)

Zero Carbon

CO ₂ emissions (construction sites, office sector)						
		2021	2022			
Emissions	×104t-CO2	19.1	23.4			
Basic unit*	t-CO ₂ /¥ 10 ² million	15.3	16.4			
Reduction rate	%	Base year	+6.7			

^{*} The basic unit is sales (per 100 million yen)

CO ₂ emissions from construction sites (FY)								
		2013 (base year)	2019	2020	2021 (base year)	2022		
Emissions	×10 ⁴ t-CO ₂	22.8	22.7	15.7	17.7	22.6 🗸		
Basic unit*	t-CO ₂ /¥ 10 ² million	22.0	17.6	13.8	14.0	16.0 🗸		
Reduction rate	%	14.8	20.0	37.3	36.4	+14.9 🗸		

 $^{^{\}star}$ The benchmark year is 2013 for the FY2019 and FY2020 results, and FY2021 for the FY2022 results.

Scope Type CO ₂ emissions						(FY)
Kajima (non-consolidated)		2018	2019	2020	2021	2022
Scope-1	×10 ⁴ t-C0 ₂	20.5	17.0	12.4	14.9	18.9 🗸
Scope-2	×10 ⁴ t-C0 ₂	6.0	7.0	4.7	4.2	4.6 🗸
Scope-3	×10 ⁴ t-C0 ₂	235.1	413.1	230.1	674.9	936.0 🗸
Category1*1 (purchased goods and services)	×10 ⁴ t-CO ₂	117.9	126.1	127.2	405.6	570.2 🗸
Category11*2 (use of sold products)	×10 ⁴ t-CO ₂	103.6	257.9	79.1	204.9	273.3 🗸
Scope-1,2,3 total	×10 ⁴ t-C0 ₂	261.6	437.1	247.1	694.0	959.5 🗸
Consolidated Kajima Group					2021	2022
Scope-1*3	×10 ⁴ t-C0 ₂				29.2	34.2
Scope-2	×10 ⁴ t-C0 ₂				12.9	13.8
Scope-3	×10 ⁴ t-C0 ₂				1032.7	1557.1
Category1*3 (purchased goods and services)	×10 ⁴ t-CO ₂				610.6	916.5
Category11*2 (use of sold products)	×10 ⁴ t-CO ₂				307.9	467.7
Scope-1,2,3 total	×10 ⁴ t-C0 ₂				1074.9	1605.2

^{*1:} Up to and including FY2020, calculations of CO₂ emissions only covered the main construction materials, namely crushed stone, asphalt, cement, and ready-mixed concrete.
*2: The calculation includes CO₂ emissions from the use stage of the lifecycle (set to 30 years) of buildings designed by us and completed during the subject fiscal year.

When the lifecycle is set to 60 years

		2021	2022
Kajima (non-consolidated)	×10 ⁴ t-C0 ₂	409.7	546.6
Consolidated Kajima Group	×10 ⁴ t-C0 ₂	615.7	935.3

^{*3:} When CO₂ emitted by companies helping with construction projects by our overseas group companies is recorded as Scope-3, Category 1 emissions

		2021	2022
Scope-1	×10 ⁴ t-C0 ₂	24.5	29.1
Scope-3, Category 1	×10 ⁴ t-C0 ₂	615.3	921.6

^{*} The emissions calculation method was changed in FY2020 from making estimates based on sample data to obtaining the actual data from all construction sites.

* Basic unit is sales of construction work (/ 100 million)

Zero Carbon

Energy Consumption	Energy Consumption (FY)									
		2018	2019	2020	2021	2022				
Total amount of energy consumption*	×104kWh	115.4	109.1	77.9	86.6	108.2 🗸				
Fossil fuels consumption	×104kWh	81.8	68.0	49.9	60.0	76.1 🗸				
Construction sites	×104kWh	81.6	67.8	49.7	59.7	75.2 🗸				
Offices	×10 ⁴ kWh	0.2	0.2	0.2	0.2	0.2 🗸				
Diesel oil substitute consumption (B100, B5, GTL)	×10 ⁴ kWh					0.6				
Construction sites	×10 ⁴ kWh					0.6				
Offices	×10 ⁴ kWh					0				
Purchased electricity	×10 ⁴ kWh	11.9	14.6	9.9	9.4	11.4 🗸				
Construction sites	×10 ⁴ kWh	9.4	12.1	7.3	6.6	8.7 🗸				
Offices	×10 ⁴ kWh	2.5	2.5	2.6	2.8	2.7 🗸				
Steam/Heating/Cooling consumption (only office)	×10 ⁴ kWh	0.6	0.6	0.6	0.6	0.5 🗸				

^{*} The total amount of energy consumption is different from the simple total value of each energy consumption, since it sums up the value obtained by converting the purchased electric energy into the primary energy. energy into the primary energy.

Contribution amount of indirect CO ₂ emissions reduction (FY)									
		2018	2019	2020	2021	2022			
Contribution amount of CO ₂ emissions reduction attributable to energy-saving design of buildings*	×10 ⁴ t-CO ₂	31.3	48.8	31.7	30.8	63.3			

^{*} From FY2017, the CO₂ emission amount is calculated by multiplying annual contribution of CO₂ reduction attributable to energy-saving design of buildings, which are designed internally and completed in the FY, by the life-cycle of buildings (30years).

Zero Waste

Overseas construction sites are excluded from the calculation because standards and treatment methods for waste are greatly different from country to country.

Usage of materials (FY)										
	Material		2018	2019	2020	2021	2022			
Steel	Total usage	t				867,860	943,593			
Cement	Total usage	t	1,460,063	1,558,339	1,569,311	4,338,657	8,021,759			
Aggregate	Total usage	t	674,733	691,046	361,439	1,663,110	1,860,099			
Asphalt	Total usage	t	53,947	26,378	20,039	3,040	417,130			
Others	Total usage	t				1,200,113	2,111,643			
Total	Total usage	t	2,188,743	2,275,763	1,950,789	8,072,781	13,354,224			

 $^{^*\, \}text{Until FY2020, only main construction materials were aggregated}; since\, \text{FY2021, all construction materials have been aggregated}.$

Volume of construction waste and final disposal volume (FY)									
2018 2019 2020 2021									
Volume	×10⁴t	199.4	145.5	159.2	228.6	188.2 🗸			
Volume (excluding sludge)	×10⁴t	130.2	88.4	102.1	151.5	120.8 🗸			
Final disposal Volume	×10⁴t	8.5	5.7	4.0	5.4	5.1 ☑			
Final disposal Volume (excluding sludge)	×10⁴t	5.8	2.9	3.3	3.7	4.3 🗸			
Final disposal rate	%	4.3	3.9	2.5	2.4	2.7 ✓			
Final disposal rate (excluding sludge)	%	4.5	3.3	3.2	2.4	3.6 ✓			

 $^{^{\}star}$ The final disposal volume from construction sites and offices was 41,289t

Emissions by waste category (FY2022)									
Construction waste	Volume (t)	Percentage of waste volume							
Concrete remnants	710,012 🗹	38% ✓							
Asphalt Concrete remnants	99,296 🗸	5% ✓							
Wood scrap	43,176 🗸	2% 🗸							
Construction sludge	674,800 🗸	36% ✓							
Mixed waste	35,813 🗸	2% ✓							
Waste plastic	8,817 🗸	0% ✓							
Others	310,476 🗸	16% ✓							
Total	1,882,390 ✓	100% ☑							

(F)

Volume of offices waste											
		2018	2019	2020	2021	2022					
Waste	t	2,036.4	2,096.5	1,670.0	2,129.0	1650.8 🗸					

Plastic reduction

The Plastic Resource Recycling Promotion Act came into effect in April 2022. At Kajima, as a mass producer that generates industrial plastic product waste, we are working to reduce and recycle such waste. Specifically, we are making efforts to continuously collect and recycle used products such as helmets, work clothes, and badges as well as to increase construction sites' recycle rates by promoting waste separation.

Zero Waste

Was	Waste treatment by category (FY)											
Co	nstruction was	te	Co	ncrete remnar	nts	Aspha	Asphalt Concrete remnants			Wood scrap		
			2020	2021	2022	2020	2021	2022	2020	2021	2022	
tegory	Recycled volume	t	541,836	853,921	704,839 🗸	108,294	253,363	99,040 🗹	43,887	61,198	37,808 🗸	
Processing Category	Reduction volume	t	93	18	20 🗸	13	33	4 🗸	401	686	411 🗸	
Proces	Final Disposal volume	t	1,075	1,199	5,154 🗸	168	2,140	252 🗸	249	709	462 🗸	
	Total volume	t	543,004	855,138	710,012 🗸	108,476	255,535	99,296 🗸	44,537	62,593	38,681 🗸	
Co	nstruction was	te	Construction sludge				Waste plastic*			Mixed waste		
			2020	2021	2022	2020	2021	2022	2020	2021	2022	
tegory	Recycled volume	t	496,016	507,470	490,432 🗸	4,521	5,615	5,608 🗹	20,914	20,077	22,698 🗸	
Processing Category	Reduction volume	t	46,915	47,787	34,920 🗸	719	805	823 🗸	1,986	2,643	1,880 🗸	
Proces	Final disposal volume	t	6,708	17,581	8,143 🗸	1,891	2,403	2,386 🗸	11,397	7,915	11,235 🗸	
	Total volume	t	549,638	572,838	533,496 🗸	7,131	8,823	8,817 🗸	34,297	30,635	35,813 🗸	

^{*} Only plastics separated as waste are counted. This volume does not include plastics found in mixed waste.

Recycle rate by was	ste category
Construction waste	Concrete remnar

Total ×10⁴m³

(FY)

Co	Construction waste		Co	oncrete remnar	nts	Aspha	It Concrete ren	nants		Wood scrap		
			2020	2021	2022	2020	2021	2022	2020	2021	2022	
tegory	Recycled rate	%	99.8	99.9	99.3 🗸	99.8	99.1	99.7 ✓	98.5	98.1	98.0 🗸	
Processing Category	Reduction rate	%	0.0	0.0	0.0 🗸	0.0	0.0	0 🗸	0.9	0.9	1.0 ✓	
Proces	Final disposal rate	%	0.2	0.0	0.7 🗸	0.2	0.8	0.3 🗸	0.6	1.0	1.1 ☑	
	Total %		100	100	100 🗸	100	100	100 🗸	100	100	100 🗸	
Co	nstruction was	te	Construction sludge			Waste plastic*				Mixed waste		
			2020	2021	2022	2020	2021	2022	2020	2021	2022	
tegory	Recycled rate	%	90.4	69.4	74.3 🗸	63.4	63.6	63.6 🗸	61.0	65.5	63.4 🗸	
Processing Category	Reduction rate	%	8.5	28.3	24.5 🗸	9.1	9.0	9.3 🗸	5.8	9.0	5.2 ✓	
Proces	Final disposal rate	%	1.2	2.3	1.2 🗸	27.2	27.2	27.1 ✓	33.2	25.8	31.4 🗸	
	Total		100	100	100 🗸	100	100	100 🗸	100	100	100 🗸	

Amount of tap water consumption (Fy)											
2018 2019 2020 2021 2022											
Construction sites	×10 ⁴ m ³	71.3	60.9	87.0	91.8	122.7 🗸					
Offices	×10 ⁴ m ³	15.6	15.0	15.0	16.2	17.0 ✓					

Tota	I ×10⁴m³	86.9	75.9	102.0	108.1	139.7 🗸
Amount of waste	water					(FY)
				2020	2021	2022
Construction sites	×10 ⁴ m ³			112.3	98.3	92.4 🗸
Offices	×10 ⁴ m ³			15.0	16.2	17.0 🗸

Note: At construction sites, more sewage is drained than tap water is used because rain and spring water are treated as sewage.

127.3

114.5

109.4 🗸

Zero Impact

■ Management of hazardous substances

Possiver amount of CCCs	9 L	olono						
Recover amount of CFCs	αn			0040		0000	0004	0000
_		201		2019		2020	2021	2022
Recover amount	t	1.5		0.2		3.9	1.9	3.2 ✓
Recover amount of used	lore	escent lamp)					
		201	8	2019		2020	2021	2022
Recover amount	t	77.	9	43.3		49.2	66.4	49.1 🗸
Disposal volume of PCB i	nclı	ıde equipm	ent					
Diopoda Volanio di F de F		201		2019		2020	2021	2022
Number of items		22		105		0	0	0 🗸
Disposal volume of hazard		a matariala	/disaless	d from EV001	17\			
Disposal volume of nazare	Jou				17)	0000	0004	0000
000 // / / /		201	8	2019		2020	2021	2022
CFCs/ halon, fluorescent lamps (mercury), asbestos and other hazardous materials	t	523,0	009	216,398	8	104,127	62,867	141,402 🗸
Recover amount of mater	ials	containing	asbestos					
		201	8	2019		2020	2021	2022
Recover amount	t	56,9	26	6,197		14,251	8,916	5,627 ✓
Number of soil contamina	tior	n surveys						
		201	8	2019		2020	2021	2022
Number of surveys as a designated institution		14		9		9	25	15
Number of law investigation included in above number		7		4		4	8	9
Air pollutant emissions						(FY)		
		2018	2019	2020	202	2022		
NOX	t	1,346	1,120	821	98	37 1,252 ☑		
SOX	t	200	167	122	14	17 186 🗸		

■ Harmoniously Co-Existing with Nature

Outstanding biodiversity projects (FY2022)				
Area	Project name			
Building construction	Reitaku University Campus Redevelopment Plan			
Building construction	(Tentative) GFS Plan			
Building construction	(Tentative) New Building Construction in the Osaka Yodogawa Ward Juso East Area Development Plan			
Building construction	(Tentative) B Building Construction in the Toyosu 4-2 Area			
Building construction	JASM New Construction			
Civil Engineering	Achiwa Industrial Park Construction project in Okazaki city			
Frontier	Seaweed bed preservation and creation activities by the Hayama Seagrass Council obtained J Blue Credit certification			

2022 Environmental accounting report

1. Overview

Kajima limits environmental accounting to construction waste for the following reasons.

- Construction waste is managed by manifest system, together with high accuracy of numerical value (product category of emissions and disposal amount).
- Construction waste revealed to be the largest cost factor, which accounts for half of the total environmental cost based on the survey results of environmental accounting.
- Waste disposal is evaluated from both aspects of cost and environmental impact, and use it as an incentive for zero emissions.

2. Result on major construction waste

Construction waste	Volume of waste (156.2×10⁴t)	Processing cost (124× ¥ 10²million)	CO ₂ emissions (0.1×10 ⁴ t)
Construction sludge	674,800t	6,825 x ¥ 10²million	59t
Concrete remnants	710,012t	2,774x ¥ 10 ² million	791t
Asphalt concrete remnants	99,296t	401x ¥ 10 ² million	108t
Mixed waste (organic)	32,181t	1,250x ¥ 10 ² million	70t
Mixed waste (inorganic)	3,028t	106x ¥ 10 ² million	11t
Wood scrap	43,176t	1,071x ¥ 10 ² million	396t
Total	1,562,493t	12,426x ¥ 10 ² million	1,436t
reference: All construction waste	1,882,390t	-	10,572t
Percentages of major wastes	83%		14%

Characteristics of the construction industry include the following.

- Wood scrap & mixed waste have large impact on treatment costs compared to emissions.
- Concrete remnants & asphalt concrete remnants are easily recycled, and, the impact on CO₂ emissions and the cost are small compared to the emissions.

3. Evaluation

- CO₂ emission of 0.1x10⁴t caused by waste disposal in general is equivalent to over 1% of 22.6x10⁴ tons, the CO₂ emissions from the construction work. (FY2021: 1%)
- Waste disposal cost accounts for 0.9% of value of construction work. (FY2021: 1.1%)

4. R&D investment on addressing environmental issues

• R&D investment for addressing environmental issues in fiscal 2022 amounted to 9,400 million yen.

Calculation method

[Quantity]

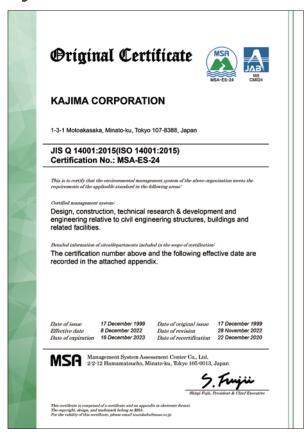
• All quantity data of waste manifests are aggregated at Kajima's environmental information system.


[Cost]

• The processing unit price of each project was aggregated and set the average unit cost for each branch by-item.

[CO₂ emission]

- In the Kanto area, waste disposal sites are selected for each item, then CO₂ emissions per treatment volume are calculated based on processing costs, energy consumption, maintenance / expendable items and facility construction costs.
- As for managed waste disposal sites, CO2 emissions are estimated based on the existing survey literatures.
- The boundary is set to intermediary processing facilities and disposal sites which are first delivered from construction sites. Subsequent facilities are excluded.
- Project sites outside of Japan are excluded since applicable standards and treatment methods of construction waste vary widely from country to country.


Environmental Management System

The Environment Committee (a special-purpose committee under the Sustainability Committee) implements initiatives in five sectors: civil engineering, building construction, environmental engineering, engineering, and research and development. Four subcommittees address environmental management, construction environments, resource recycling, and biodiversity as cross-sector issues, and working groups are also organized for matters such as addressing requirements under the Act on Rationalizing Energy Use.

Kajima surveys the energy usage of domestic and overseas Group companies and holds discussions regarding reduction measures with those companies that have the highest emissions.

Environmental Management System Certification

Independent Verification Report

No.1811004629

Independent Verification Report

To: Kajima Corporation

Japan Quality Assurance Organization (hereafter "IQA") was engaged by Kajima Corporation (hereafter "the Company") to provide an independent verification on "Kajima Corporation - Calculation Results for FY-2022* environmental performance data, revised July 7.2025* (hereafter "the Report"). The content of our verification was to express our conclusion, based on our verification procedures, on whether the statement of information regarding greenhouse gas thereafter "GHG") emissions; energy consumption; the data converted into calculorife equivalents) (hereafter "energy consumption; they buy after consumption; wastewater discharge; waste volume, final disposal volume and final disposal rate(hereafter "waste volume"); disposal and transfer volume of the 18 hazardous substances associated with construction work, disposal volume and calculated, in accordance with the "Kajima Corporation - Calculation rule for environmental performance data (since 2023)* (hereafter "the Rule"). The purpose of the verification is to evaluate the Report objectively and to enhance the credibility of the Report. Rule"). The purpose of the verification is to evaluate the Report of *The fiscal year 2022 of the Company ended on March 31, 2023.

2. Procedures Performed I/QA conducted verification in accordance with "ISO 14064.3" for GHG emissions for Scope 1, 2 and 3 and energy consumption, and with "ISAE3000" for tip water consumption, wastewater discharge, waste volume; hazardous substances volume; and NOx and SOx emissions, respectively. The scope of this verification assignment covers energy-derived CO₂ emissions from Scope 1.82, and 3 category 2.43.45.67.88 [Jul 11,213,14 and 15] as GHG emissions, energy consumption, a pawater consumption, wastewater discharge; waste volume; hazardous substances volume; and NOx and SOx emissions. The verification was conducted to a limited level of assumance and quantitative materiality was set at 5 percent each of the total emissions, consumption, amount of discharge and amount of volume in the Report. The organizational boundaries of this verification covers domestic construction sites and civil engineering sites, overseas civil engineering sites, 75 domestic offices and 7 overseas offices of the Company.
Our verification procedures included:

- rece of the Company's Dead office to perform validation to check the Rule and conduct verification. Verifying to check monitoring and calculation system; calculation scenario; and cross-check activity data against evidence.

 Cross-checking activity amount data of 4 offices on the basis of sampling, to evaluate accuracy of calculated results for GHG emissions (Scope 1 and 2), energy consumption, tap water consumption, wasteward relatinge; waste volume of the object assessment to check the report scope and boundaries, calculation scenario and allocation method for CO₂ emissions (Scope 2: emissions, Brazardous arbeitances volume; NOx and SOx emissions; and monitoring and calculation system and its controls for overall

3. Conclusion
Based on the procedures described above, nothing has come to our attention that caused us to believe that the statement of the information regarding the Company's FY2022 GHG emissions (Scope 1, 2 and 3), energy consumption, tap water consumption wastewater discharge; waste volume, hazardous substances volume, and NOx and SOx emissions in the Report is not materially correct, or has not been prepared in accordance with the Rule. In addition, the main scope of this verification assignment and calculation results are shown in Table 1.

*Please refer to the previous page.

Page 1 of 3

No.1811004629

4. Consideration
The Company was responsible for preparing the Report, and JQA's responsibility was to conduct verification of GHG emissions (Scope 1, 2 and 3); energy consumption; tap water consumption; wastewater discharge; waste disposal volume, hazardous substances volume; and NOx and SOx emissions in the Report only. There is no conflict of interest between the Company and

For and on behalf of Japan Quality Assurance C 1-25, Kandasudacho, Chiyoda-ku, Tokyo, Japan July 25, 2023

*Please refer to the previous page and the annex in the next page.

Page 2 of 3

No.1811004629

Independent Verification Report ANNEX

To: Kajima Corporation

Table 1 Main scope of this verification assignment and calculation results

GHG emission	744.3		
Scope1			188,580
Scope2			45,838
Scope3			9,360,385
	categoryl		5,701,816
	category2		98,57€
	category3		35,045
	category4		571,420
	category5		10,572
	category6	t-CO,	1,05
	category7	1-CO2	5,462
Scope3 Breakdown	category8		(
Dicakuowii	category9		(
	category10		(
	category11		2,733,153
	category12		155,75
	category13		47,527
	category14		(
	category15		(

Total amount of energy consumption	MWh	1,081,934
Water		
Tap water consumption	m ³	1,397,115
Wastewater discharge	m ³	1,094,295
Waste		
Volume of construction waste(including sludge)	m ³	1,882,390
Final disposal volume of construction waste(including sludge)	m ³	51,141
Final disposal rate of construction waste(including sludge)	%	2.7

Volume of office waste	m ³	1,651
Hazardous substances		
18 Hazardous substances volume	I.	141,402
NOx emissions	t	1,252
SOx emissions	t.	186

*Please refer to the previous page

Page 3 of 3