KAJIMA CORPORATION ENVIRONMENTAL DATA

2019

Environmental Policy

Kajima, as the company "Building for the Next 100 Years," pursues a unique long-term environmental vision, doing its part in the broader social efforts to preserve the environment and ensure economic sustainability.

1

We work to reduce the environmental impact of our business and take into consideration the entire lifecycle of the structures we construct. We thereby seek to help build societies which use materials responsibly, have a low carbon footprint, and harmonize with nature.

2

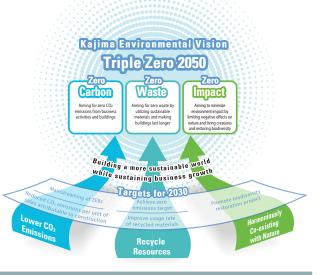
As a standard for achieving these goals, Kajima:

- Creates innovative technologies that help safeguard the environment and use resources sustainably;
 - Engages in construction management processes to prevent environmental damage caused by hazardous materials used in construction projects; and
 - Cooperates with the public, including by proactively disclosing information.

F

Kajima Environmental Vision

Background of Kajima Environmental Vision


Kajima assess environmental risks and opportunities in the construction business as follows.

Low Carbon Society	 In order to achieve the 80% greenhouse gas reduction targets of developed countries by 2050, the introduction of renewable energy as well as energy conservation of society is urgently needed. High expectation is observed to construction industry like initiatives to zero energy building (ZEB) since it is a high-priority measures from the standpoint that energy efficiency of buildings is in particular cost and reduction effectiveness together with adaptable easily. Resource usage has been largely utilized as well as CO₂ emissions related to the production, processing and transportation of materials.
Recycling Resources Society	 There is a room for more efficient resource utilization since construction industry has a large amount of resource and waste consumption. Potential to take advantage of recycled materials (including derived from other industries), therefore, an important role in resource recycling. By leveraging the long-life of the building, the large role in the creation of stock society.
Natural Symbiosis Society	 In the construction business, a role in modifying the direct natural environment through construction projects which has been involved in the local eco-system, as well as the potential of biodiversity restoration in the urban redevelopment. Since the urban concentration of the population progresses, the growing importance of biodiversity restoration in the city. Through wood procurement and resource procurement, biodiversity can be addressed in logged spots.

• Kajima Environmental Vision - Triple Zero 2050

The priority environmental focus in the Medium-Term Business Plan (Fiscal 2018-2020) announced last year is "pursue environmental and energy opportunities for the business activities of the Kajima Group and its customers." We are stepping up specific efforts in our own business activities to reduce carbon dioxide (CO₂) emissions at construction sites, as well as utilizing our superior technologies to help customers address their environmental and energy issues.

Formulated in 2013, the Kajima Environmental Vision: Triple Zero 2050 is the basis of our environmental initiatives. Our ultimate goals in the areas of CO₂ reduction, resource recycling and harmonious co-existence are, respectively, zero carbon, zero waste, and zero impact. In particular, to reflect the signing of the Paris Agreement and the rise in ESG investment, we established new targets for reducing CO₂ emissions. We aim to reduce our CO₂ emission intensity (t-CO₂/¥ hundred million of sales) by 30% compared to fiscal 2013 by 2030, and by 80% no later than 2050.

	Social Goals	Triple Zero 2050	Targets 2030
	Lower CO ₂ Emissions Balancing greenhouse gas emissions from human activities with the Earth's capacity for CO ₂ absorption	Zero Carbon Aiming for a zero carbon footprint by reducing the Group's greenhouse gas emissions (Scope 1, 2, and 3 emissions) by at least 80% compared to fiscal 2013	Group-wide Reduce Group-wide greenhouse gas emissions (Scope 1 and 2 emissions) per unit of sales to 30% of fiscal 2013 level or lower (equivalent to a 30% reduction of total emissions with fixed construction amount); contribute to the reduction of Scope 3 emissions as well, through joint efforts in the supply chain Construction Operations Lower construction site greenhouse gas emissions per unit of sales to 30% of fiscal 2013 level or lower Architectural Design Lower CO ₂ emissions in the operation stage of newly completed buildings by at least 30% compared to Japan's energy-saving standard Mainstream ZEB Ready buildings and pursue net ZEB for flagship projects
Building a More Sustainable World	Recycle Resources Pursuing zero emissions by employing state-of-the-art infrastructure maintained and operated using sustainable resources	Zero Waste Aiming to eliminate waste from construction operations by ensuring zero landfill disposal of waste during construction, utilizing sustainable materials, and making buildings last longer	Completely eliminate final landfill waste from construction operations Achieve a usage rate of recycled materials of at least 60% for principal construction materials (steel, cement, ready- mixed concrete, crushed stone and asphalt)
	Harmoniously Co-Existing with Nature Valuing the continuous benefits of ecosystem services by minimizing the impact of human activities on the environment and living creatures	Zero Impact Aiming to minimize the overall environmental impact of construction operations by limiting their effect on nature and living creatures while promoting the restoration of biodiversity and new ways to make use of its benefits	Promote biodiversity restoration projects Build a portfolio of effective projects and make them hubs for biodiversity-related networking
	Common Foundation Initiative Areas	Management of hazardous substat Ensure preventative measures (esp Conduct research and technology Actively distribute information in ar	pecially for soil contamination and asbestos) and proper management of chemical substances development

Environmental Targets (FY2018-2020) and FY2018 Actual Figures

		Three-Year (FY2018–2020) Targets	FY2018 Targets	FY2018 Results
	Construction	 Reduce CO₂ emissions per unit of sales attributable to construction by 8% compared to fiscal 2013 	• Reduce CO_2 emissions by 4%	 Reduced CO₂ emissions by 9%
nissions	Design	 Secure conformance with QCDSE (Quality, Cost, Design, Safety, Environment) mandatory standards in Building Energy Efficiency Act 	 Implement action plans that conform with mandatory standards in Building Energy Efficiency Act 	 Set and managed original issues in line with building use
Lower CO ₂ Emissions		 Develop industry-leading CO₂ emissions targets 	 Actively utilize labeling programs such as the Building Energy- efficiency Labeling System (BELS) 	 Numerous projects for which efforts are underway to obtain BELS, CASBEE New Structure, CASBEE Wellness Office, LEED NC and other certifications One CASBEE New Structure certification obtained
			 Achieve corporate targets for energy efficiency (20% reduction) 	• 23.2% reduction
Se	Construction	 Less than 3% landfill waste including sludge 	 Less than 3% landfill waste including sludge 	 Final disposal rate of 4.5% (including sludge)
Recycle Resources	Design	 Implement green procurement 	 Propose more than four items, indicate them on working drawings, and verify whether or not the proposed items were ultimately adopted 	• Average of 5.3 items proposed
Recy		 Design buildings with a longer life 	 Attain a score of at least 3.6 for evaluations based on in-house check sheet 	• Evaluation: Average of 3.64
Co- ature		 Implement outstanding biodiversity projects 	 Implement more than six outstanding biodiversity projects per year 	Selected nine outstanding projects
Harmoniously Co- Existing with Nature		 Reduce the environmental impact of construction (particularly through management of hazardous materials and polluted water management, etc.) 	 Limit the environmental impact of construction (particularly through management of hazardous materials and polluted water, etc.) 	 No environmental impact from hazardous materials or polluted water (Two minor procedural violations of the Waste Management and Public Cleansing Act)
		Implement R&D and promote	e technologies and services that support Tr	iple Zero 2050 objectives
Common Foundation Initiative Areas	R&D	 Implement research and technology development that contributes to preservation of the environment and sustainable use More than six examples of deploying research or technology results to onsite operations over the three-year period 	 Environmental contribution R&D projects: 6 Environmental contribution technology projects deployment: 2 	 Designated environmental topics: 18 Results deployed: 3 instances
mon Foundatio	Environment Engineering	 Promote environmental management in concert with Group companies Make technical innovations and create projects based on Triple Zero 2050 	 Improve environment-related proposal capabilities, pursue project making 	 Strengthened efforts in four priority fields Efforts toward next-generation technologies/ projects, environmental fairs held in collaboration with branches (3 times)
Com	Engineering	 Provide customers with high- environmental performance production facilities 	 Confirm Triple Zero 2050 approaches and measures for dealing with chemical substances in projects 	 Confirmation at Division Design Review, project review committees (reviews conducted for all 14 target projects)

Material Flow

Construction Sites OUTPUT INPUT Changes in CO₂ emissions CO₂ emissions 25.1×10⁴t ✓ attributable to construction Energy Construction Total emissions 25.1×10⁴t-CO₂ **75.0**×10⁴m³ surplus soi Basic unit Electricity 9,358×10⁴kWh **20**×10²billion ¥ Hazardous Reduction rate materials collected 9% 🗸 (compared with FY1990) Materials containing Diesel oil 75,703kl 🗸 56,926t 🗸 asbestos CFCs and halon 1.5t 🗸 Kerosene 2,137kl 🗸 Fluorescent tubes 77.9t 🗸 Water 71.3×10⁴m³ Volume of construction waste Construction waste **199.4**×10⁴t 🗸 and final disposal volume Main construction 218.9×10⁴t Volume \checkmark 199.4×10⁴t Final disposal volume 8.5×10⁴t 🗸 materials Volume 130.2×10⁴t \checkmark (excluding sludge) Final disposal volume \checkmark 8.5×10⁴t Office Final disposal volume INPUT OUTPUT 5.8×10⁴t \checkmark (excluding sludge) Energy Final disposal rate 4.3% \checkmark Final disposal rate 4.5% \checkmark Electricity 2,544×10⁴kWh 🗸 (excluding sludge) CO₂ emissions **1.4**×10⁴t ✓ Heavy oil 11ке 🗸 Kerosene 10kl 🗸 Gas 15.7×10⁴m³ Heating, Steam, Volume of waste 2,036.4t 🗸 16,755GJ 🗸 Cooling Water 15.6×10⁴m³

Scope: Kajima Corporation only

•Construction sites: all domestic and overseas sites (excluding domestic affiliate companies and overseas subsidiaries)

•Offices: offices of Kajima corporation and overseas offices (excluding domestic affiliate companies and overseas subsidiaries)

■Regarding third party verification

•Environmental performance data for FY2018

Greenhouse gas emissions (Scope 1, 2, 3,), energy use, clean water use, hazardous materials and waste emissions were verified by Japan Quality Assurance Organization (JQA).

Items indicated with were verified by the third party. (Verification document attached to the end page)

Zero Carbon

Any greenhouse gasses other than \mbox{CO}_2 are not emitted through our business operations.

CO ₂ emissions from construction sites (FY)									
		1990	2014	2015	2016	2017			
Emissions	×104t-C02	46.8	26.2	26.2	25.8	27.4			
Basic unit	t-CO ₂ /10 ² million ¥	25.8	22.2	21.5	21.5	21.4			
Reduction rate	%	_	14	16.5	16.6	16.9			
		2013	2018						
Emissions	×104t-C02	22.8	25.1 🗸						
Basic unit	t-CO ₂ /10 ² million ¥	22.0	20.0 🗸						
Reduction rate	%	_	9.0 🗸						

* Since the results of FY2018, the base year of reduction rate has been changed from FY1990 to FY2013.

Scope type CO ₂ emissions (construction sites and offices) (FY)									
		2014	2015	2016	2017	2018			
Scope-1	×104t-CO2	20.4	20.4	18.5	19.0	20.5 🗸			
Scope-2 ×104t-CO2 7.3 7.4 8.8 9.8 6.0 🗸									

Energy Consumption	Energy Consumption								
		2014	2015	2016	2017	2018			
Total amount of energy consumption*	×10 ⁴ kWh	117.5	118.6	120.1	113.6	115.4 🗸			
Fossil fuels consumption	×10 ⁴ kWh	81.6	81.4	74	75.9	81.8 🗸			
Construction sites	×10 ⁴ kWh	81.3	81.2	73.7	75.6	81.6 🗸			
Offices	×10 ⁴ kWh	0.3	0.2	0.3	0.3	0.2 🗸			
Purchased electricity	×10 ⁴ kWh	12.8	13.1	16.4	13.5	11.9 🗸			
Construction sites	×10 ⁴ kWh	10.2	10.6	13.8	10.8	9.4 🗸			
Offices	×10 ⁴ kWh	2.6	2.5	2.6	2.7	2.5 🗸			
Steam/Heating/Cooling consumption(only office)	×10 ⁴ kWh	0.7	1.0	0.7	0.6	0.6 🗸			

* The total amount of energy consumption is different from the simple total value of each energy consumption, since it sums up the value obtained by converting the purchased electric energy into the primary energy.

Contribution amount of ind	Contribution amount of indirect CO ₂ reduction (FY)									
		2014	2015	2016	2017	2018				
Contribution amount of CO ₂ reduction attributable to green procurement (blast furnace cement/concrete)	×10 ⁴ t-CO ₂	8.6	9.9	10.4	10.0	9.4				
Contribution amount of CO ₂ reduction attributable to ener- gy-saving design of buildings	×10 ⁴ t-CO ₂	80.5	76.6	129.3	39.0	31.3				
Total	×104t-CO2	89.1	86.5	139.7	49.0	40.7				

* From FY2017, the CO₂ emission amount is calculated by multiplying annual contribution of CO₂ reduction attributable to energy-saving design of buildings, which are designed internally and completed in the FY, by the life-cycle of buildings (30years). The previous year releases have been re-calculated using to align with this definition.

Zero Waste

Overseas construction sites are excluded from the calculation because standards and treatment methods for waste are greatly different from country to country.

Volume of construction waste and final disposal volume (FY)									
		2014	2015	2016	2017	2018			
Volume	×104t	197.5	248.6	230	198.8	199.4 🗸			
Volume (excluding sludge)	×104t	132.6	162.6	123.6	123.4	130.2 🗸			
Final disposal Volume	×104t	13.9	16.1	13.2	4.8	8.5* 🗸			
Final disposal Volume (excluding sludge)	×104t	4.5	5.0	3.3	2.6	5.8 🗸			
Final disposal rate	%	7.1	6.5	5.8	2.4	4.3 🗸			
Final disposal rate (excluding sludge)	%	3.4	3.1	2.7	2.1	4.5 🗸			

*Total waste disposal volume: total volume from construction sites (the table above) and offices (the table: volume of offices waste) is 86,850t

Was	Waste treatment by category (FY)										
Co	nstruction was	te	Co	oncrete remnan	its	Aspha	It Concrete ren	nants	Wood scrap		
			2016	2017	2018	2016	2017	2018	2016	2017	2018
tegory	Recycled volume	t	869,384	827,177	797,971 🗸	109,495	135,460	139,679 🗸	39,251	31,011	42,700 🗹
Processing Category	Reduction volume	t	8	119	28 🗸	22	23	26 🗸	529	506	673 🗸
Proces	Final disposal volume	t	1,444	831	1,994 🗸	318	490	439 🗸	185	288	421 🗸
	Total volume	t	870,836	828,127	799,992 🔽	109,835	135,972	140,144 🗸	40,235	31,806	43,794 🗸
Co	nstruction was	te	Co	nstruction slud	ge	Mixed waste					
			2016	2017	2018	2016	2017	2018			
legory	Recycled volume	t	892,615	647,646	601,964 🗸	23,540	27,742	35,982 🗸			
Processing Category	Reduction volume	t	70,268	76,445	62,959 🗸	2,413	2,413	2,177 🗸			
Proces	Final disposal volume	t	99,168	22,404	26,601 🗸	8,232	7,442	13,415 🗸			
	Total volume	t	1,062,051	746,495	691,524 🗸	34,185	37,596	51,574 🗸			

Rec	Recycle rate by waste category (FY)										
Co	onstruction was		Co	oncrete remnan	its	Asphalt Concrete remnants			Wood scrap		
20			2016	2017	2018	2016	2017	2018	2016	2017	2018
tegory	Recycled rate	%	99.8	99.9	99.7 🗸	99.7	99.6	99.7 🗸	98.2	97.5	97.5 🗸
Processing Category	Reduction rate	%	0.0	0.0	0.0 🗸	0.0	0.0	0.0 🗸	1.3	1.6	1.5 🗸
Proces	Final disposal rate	%	0.2	0.1	0.2 🗸	0.3	0.4	0.3 🗸	0.5	0.9	1.0 🗸
	Total	%	100	100	100 🗸	100	100	100 🗸	100	100	100 🗹
Co	onstruction was		Construction sludge			Mixed waste					
			2016	2017	2018	2016	2017	2018			
tegory	Recycled rate	%	84.0	86.8	87.0 🗸	68.9	74.6	69.8 🗸			
Processing Category	Reduction rate	%	6.6	10.2	9.1 🗸	7.1	5.3	4.2 🗸			
Proces	Final disposal rate	%	9.3	3.0	3.8 🗸	24.1	20.0	26.0 🗸			
	Total	%	100	100	100 🗸	100	100	100 🗸			

Zero Waste

Emissions by waste category (FY2018)								
Construction waste	Volume	Percentage of waste volume						
Concrete remnants	799,992t 🗹	40% 🗹						
Asphalt Concrete remnants	140,144t 🗹	7% 🗸						
Wood scrap	43,794t 🗹	2% 🗸						
Construction sludge	691,524t 🗸	35% 🗸						
Mixed waste	51,574t 🗸	3% 🗸						
Others	266,671t 🗹	13% 🗹						
Total volume	1,993,699t 🗹	100% 🗹						

Emissions by construction type (FY2018)

	New construction		Demo	olition	Others		
Construction waste		Percentage of waste volume		Percentage of waste volume		Percentage of waste volume	
Concrete remnants	208,472t 🗸	20% 🗸	520,760t 🗹	66% 🗸	70,760t 🗸	47% 🗸	
Asphalt Concrete remnants	63,247t 🗸	6% 🗸	59,186t 🗸	7% 🗸	17,712t 🗸	12% 🗸	
Wood scrap	26,690t 🗸	3% 🗸	11,842t 🗸	1% 🗸	5,263t 🗸	3% 🗸	
Construction sludge	16,968t 🗸	2% 🗸	25,266t 🗸	3% 🗸	9,341t 🗸	6% 🗹	
Mixed waste	82,104t 🗸	8% 🗸	117,138t 🗸	15% 🗹	67,429t 🗸	44% 🗸	
Others	585,333t 🗸	56% 🗹	52,986t 🗸	7% 🗸	53,206t 🗸	35% 🗸	
Total volume	982,812t 🗹	100% 🗹	787,177t 🗸	100% 🗹	223,710t 🗹	100% 🗸	

Volume of offices waste							
		2014	2015	2016	2017	2018	
Offices	t	974.6	1,389.6	1,414.8	1,942.4	2,036.4 🗸	

Water consumption (FY)							
		2014	2015	2016	2017	2018	
Construction sites	×104m3	164.2	141.7	159.7	86.5	71.3 🗸	
Offices	$\times 10^4 m^3$	15.0	13.6	12.7	14.8	15.6 🗸	
Total	$\times 10^4 m^3$	179.2	155.3	172.4	101.3	86.9 🗸	

Usage rate of recycle	ed materials				(FY)
	Material		2016	2017	2018
	Total usage	t	1,250,000	1,270,000	1,460,063
Cement	Recycled material usage	t	409,000	390,314	368,654
	Usage rate of recycled materials	%	33	31	25 🗌
	Total usage	t	565,000	909,000	674,733
Aggregate	Recycled material usage	t	209,000	278,000	445,273
	Usage rate of recycled materials	%	37	31	66 🗌
	Total usage	t	17,000	54,000	53,947
Asphalt	Recycled material usage	t	13,000	43,000	44,656
	Usage rate of recycled materials	%	76	80	83 🗌
	Total usage	t	1,832,000	2,233,000	2,188,743
Total	Recycled material usage	t	631,000	711,000	858,583
	Usage rate of recycled materials	%	34	32	39 🗌

Zero Impact

Recover amount of CFC	s & halo	ons				(1
		2014	2015	2016	2017	2018
Recover amount	t	6.8	3.4	0.1	5.3	1.5 🗸
					·	
Recover amount of used	d floresc	ent lamp				(
		2014	2015	2016	2017	2018
Recover amount	t	47.3	48.1	34.9	42.2	77.9 🗸
Disposal volume of PCB	include	equipment				(
		2014	2015	2016	2017	2018
Number of items		940	52	24	8	22 🗸
Disposal volume of haza	ardous r	naterials (publish	ed from FY2017)			(1
						2018

Recover amount of materials	s containing asbestos	6			(FY)
	2014	2015	2016	2017	2018

13,250.5

17,490.1

523,009 🗸

56,926.0 🗸

t Fluorocarbon/ halon, fluorescent lamps (mercury), asbestos and other hazardous materials

21,329.2

Number of items

Recover amount

t

13,946.3

Number of soil contamination surveys						
	2014	2015	2016	2017	2018	
Number of surveys as a designated institution	5	5	17	17	14 🗌	
Number of law investigation included in above number	1	0	5	5	7 🗌	

Air pollutant emissions (FY)								
		2014	2015	2016	2017	2018		
NOX	t	1,340	1,340	1,220	1,250	1,346 🗸		
SOX	t	200	200	180	185	200 🗸		

2018 Environmental accounting report

1. Overview

Kajima has shifted to the segment accounting, which was limited to the construction waste the subject of environmental accounting in the FY 2010.

- Construction waste is managed by manifest system, together with high accuracy of numerical value (product category of emissions and disposal amount).
- Construction waste revealed to be the largest cost factor, which accounts for half of the total environmental cost based on the survey results of environmental accounting.
- Waste disposal is evaluated from both aspects of cost and environmental impact, and use it as an incentive for zero emissions.

2. Result on major construction waste

Construction waste	Volume of waste (171×10⁴t)	Processing cost (144.6×10 ² million ¥)	CO ₂ emissions (1.1×10 ⁴ t)	
Construction sludge	681,413t	6,747 x million ¥	4,714t	
Concrete remnants	798,713t	4,065 x million ¥	4,010t	
Asphalt concrete remnants	140,143t	633 x million ¥	351t	
Mixed waste (organic)	41,822t	1,904 x million ¥	1,731t	
Mixed waste (inorganic)	2,166t	77 x million ¥	72t	
Wood scrap	43,773t	1,036 x million ¥	611t	
Total	1,708,029t	14,463 x million ¥	11,490t	
reference: All construction waste	1,740,480t	-	12,454t	
Percentages of major wastes	92%		92%	

Characteristics of the construction industry include the following.

- Wood scrap & mixed waste have large impact on treatment costs compared to emissions.
- Concrete remnants & asphalt concrete remnants are easily recycled, and, the impact on CO₂ emissions and the cost are small compared to the emissions.

3. Evaluation

- CO₂ emission caused by waste disposal in general is equivalent to over 5% of 25k tons, the CO₂ emissions from the construction work. (FY2017: 4%)
- Waste disposal cost accounts for 1.2% of value of construction work. (slightly increased from FY2017: 1.1%)

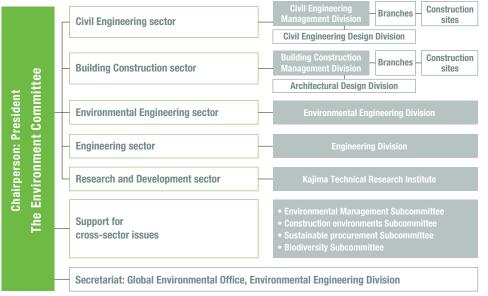
4. R&D investment on addressing environmental issues

• R&D investment for addressing environmental issues in fiscal 2018 amounted to 3,900 million yen.

Calculation method

[Quantity]

• All quantity data of waste manifests are aggregated at Kajima's environmental information system.


[Cost]

• The processing unit price of each project was aggregated and set the average unit cost for each branch by-item.

[CO₂ emission]

- In the Kanto area, waste disposal sites are selected for each item, then CO₂ emissions per treatment volume are calculated based on processing costs, energy consumption, maintenance / expendable items and facility construction costs.
- As for managed waste disposal sites, CO₂ emissions are estimated based on the existing survey literatures.
- The boundary is set to intermediary processing facilities and disposal sites which are first delivered from construction sites. Subsequent facilities are excluded.
- Project sites outside of Japan are excluded since applicable standards and treatment methods of construction waste vary widely from country to country.

Environmental Management System

Kajima operates environmental management systems (EMS) that are compliant with ISO 14001. The Environment Committee is headed by the President and implements initiatives in each of five sectors: civil engineering, building construction, environmental engineering, engineering, and research and development.

Four subcommittees address environmental management, construction environments, sustainable procurement, and biodiversity as cross-sector issues.

Environmental initiatives for domestic Group companies are primarily focused on construction-related companies, due to their high environmental impact.

Environmental Management System Certification

Independent Verification Report

No.1811003636

To: Kajima Corporation

1. Objective and Scope

Japan Quality Assurance Organization (hereafter "JQA") was engaged by Kajima Corporation. (hereafter "the Company") to provide an independent verification on" Kajima Corporation - Calculation Results for FY2018* environmental performance data, revised July 8, 2019" (hereafter "the Report"). The content of our verification was to express our conclusion, based on our verification procedures, on whether the statement of information regarding greenhouse gas (hereafter "CHG") emissions; energy use (incl. data converted into energy equivalents); clean water use; waste emissions; emissions of the 13 specified chemical substances under Chemical Substances Control Law, and NOx and SOx emissions in the Report was correctly measured and calculated, in accordance with the "Kajima Corporation - Calculation rule for environmental performance data" (hereafter "the Rule"). The purpose of the verification is to evaluate the Report objectively and to enhance the credibility of the Report. "the fiscal year 2018 of the Company ended on March 31, 2019.

Independent Verification Report

2. Procedures Performed

JQA conducted verification in accordance with "ISO 14064-3" for GHG emissions for Scope 1, 2 and 3 and energy use (incl. data converted into energy equivalents), and with "ISAE3000" for clean water use; waste emissions; emissions of the 13 specified chemical substances under Chemical Substances Control Law; and NOx and SOx emissions, respectively. The scope of this verification assignment covers Scope 1, 2 and 3 (category: 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12 and 13) as GHG emissions; energy use (incl. data converted into energy equivalents); clean water use; waste emissions; emissions of the 13 specified chemical Substances Control Law; and NOx and SOx emissions of the 13 specified chemical substances under Chemical Substances Control Law; and NOx and SOx emissions; emissions of the 13 specified chemical substances under Chemical Substances Control Law; and NOx emissions. The verification was conducted to a limited level of assurance and quantitative materiality was set at 5 percent each of the total emissions and total amount of energy use and clean water use in the Report. The organizational boundaries of this verification covers office-sites of 73 domestic bases and 5 international offices, and on-site for construction and civil engineering sites in Kajima Corporation.

Our verification procedures included:

- Visiting the Company's head office to perform validation to check the Rule and conduct verification. Verifying to check
 monitoring and calculation system; calculation scenario; and cross-check activity data against evidence.
- Conducting verification by sampling methods with activity amount data from each sites, to evaluate accuracy of calculated
 results for GHG emissions (Scope 1 and 2), energy use (incl. data converted into energy equivalents); clean water use; waste
 emissions.
- Sampling sites were 3 office sites, 3 out of 31 construction sites (3 out of 29 for clean water) and 3 out of 50 civil engineering sites (3 out of 35 or clean water), and total construction and civil engineering sites were selected by the Company.

3. Conclusion

Based on the procedures described above, nothing has come to our attention that caused us to believe that the statement of the information regarding the Company's FY2018 GHG emissions (Scope 1, 2 and 3); energy use (incl. data converted into energy equivalents); clean water use; waste emissions; emissions of the 13 specified chemical substances under Chemical Substances Control Law; and NOx and SOx emissions in the Report is not materially correct, or has not been prepared in accordance with the Rule.

4. Consideration

The Company was responsible for preparing the Report, and JQA's responsibility was to conduct verification of GHG emissions (Scope 1, 2 and 3); energy use (incl. data converted into energy equivalents); clean water use; waste emissions; emissions of the 13 specified chemical substances under Chemical Substances Control Law; and NOx and SOx emissions in the Report only. There is no conflict of interest between the Company and JQA.

Pada Sumio Asada, Board Director

For and on behalf of Japan Quality Assurance Organization 1-25, Kandasudacho, Chiyoda-ku, Tokyo, Japan July 25, 2019